
Towards the Tradeoff Between Service Performance
and Information Freshness

Zhongdong Liu and Bo Ji

Abstract—The last decade has witnessed an unprecedented
growth in the demand for data-driven real-time services. These
services are fueled by emerging applications that require rapidly
injecting data streams and computing updated analytics results
in real-time (or near-real-time). In many of such applications, the
computing resources are often shared for processing both updates
from information sources and queries from end users. This re-
quires joint scheduling of updates and queries because the service
provider needs to make a critical decision upon receiving a user
query: either it responds immediately with currently available
but possibly stale information, or it first processes new updates
and then responds with fresher information. Hence, the tradeoff
between service performance (e.g., response time) and information
freshness naturally arises in this context. To that end, we propose
a simple single-server two-queue model that captures the coupled
scheduling of updates and queries and aim to design scheduling
policies that can properly address the important tradeoff between
performance and freshness. Specifically, we consider the response
time as a performance metric and the Age of Information (AoI)
as a freshness metric. After demonstrating the limitations of
the simplest First-Come-First-Served (FCFS) policy, we propose
two threshold-based policies: the Query-k policy that prioritizes
queries and the Update-k policy that prioritizes updates. Then,
we rigorously analyze both the response time and the Peak AoI
(PAoI) of the threshold-based policies. Further, we propose the
Joint-(M,N) policy, which allows flexibly prioritizing updates or
queries through choosing different values of two thresholds M
and N . Finally, we conduct simulations to evaluate the response
time and the PAoI of the proposed policies. The results show that
our proposed threshold-based policies can effectively control the
balance between performance and freshness.

I. INTRODUCTION

The last decade has witnessed an unprecedented growth
in the demand for data-driven real-time services (built on
frameworks such as Apache Storm [1]). These services are
fueled by emerging applications that require rapidly inject-
ing data streams and computing updated analytics results in
real-time (or near-real-time). For such applications, service
performance (e.g., response time) perceived by end users is
typically a primary concern and has been extensively studied in
the literature. Yet, freshness of the information received by end
users, another equally or even more important concern, has not
received enough attention. Unilaterally optimizing service per-
formance without accounting for information freshness could
render users receive stale information, which is potentially of
much less value or even useless. For example, upon receiving a

This work was supported in part by the NSF under Grants CCF-1657162
and CNS-1651947.

Zhongdong Liu (zhongdong.liu@temple.edu) and Bo Ji (boji@temple.edu)
are with the Department of Computer and Information Sciences, Temple
University, Philadelphia, PA.

user query, in order to minimize the response time the service
provider may respond immediately with currently available
but possibly outdated information. On the other hand, it may
choose to first process new updates and then responds with
fresher information if the goal is to optimize freshness. Hence,
there exists a natural tradeoff between service performance
(e.g., response time) and information freshness.

In this paper, we consider the response time as a per-
formance metric and the Age of Information (AoI) [2] as a
freshness metric. While the response time has been shared as
a standard performance metric, the AoI, which is defined as
the time elapsed since the generation of the freshest update
among those that have been delivered to the receiver (see
Section III for the formal definition), is a recently proposed
freshness/timeliness metric [2]. Note that there is a limited
body of existing work (see, e.g., [3]–[5]) that investigates the
important tradeoff between performance and freshness as we
do. However, all of these studies provide heuristic solutions
only and fall short of theoretical results with rigorous analysis.

To that end, in this paper we aim to fill this important
gap and design efficient policies that can properly address
the critical tradeoff between performance and freshness. We
summarize the main contributions of this paper as follows.

First, we propose a simple single-server two-queue model
that captures the coupled scheduling of updates and queries.
Second, after demonstrating the limitations of the First-Come-
First-Served (FCFS) policy, we propose two threshold-based
policies: the Query-k policy that prioritizes queries and the
Update-k policy that prioritizes updates. Then, we rigorously
analyze the response time and the Peak AoI (PAoI) (i.e., the
maximum value of the AoI at the server immediately before a
new update is processed) [6] of these two policies. To the best
of knowledge, this is the first analytical work that systemati-
cally studies the tradeoff between performance and freshness
in a rigorous manner. Further, we propose the Joint-(M,N)
policy, which allows flexibly prioritizing updates or queries
through choosing different values of two thresholds M and N .
Finally, we conduct simulations to evaluate the response time
and the PAoI of the proposed policies. The results show that
our proposed threshold-based policies can effectively control
the balance between performance and freshness.

The rest of this paper is organized as follows. We first
discuss related work in Section II. Then, we describe our
proposed model in Section III. In Section IV, we analyze the
response time and the PAoI of our proposed threshold-based
policies, followed by a discussion on the simulation results in
Section V. Finally, we make concluding remarks in Section VI.



Due to space limitations, all the proofs are omitted here and
provided in our online technical report [7].

II. RELATED WORK

Research on the performance (e.g., response time) started
very early. In [8], it studies under what condition such that
the performance in FCFS policy is better than that in Process-
Sharing (PS) policy. The authors conclude that a special task
assignment which has the ability to inspect incoming tasks
and assign them to hosts for service can achieve this goal.
Further, the performance comparison between the Shortest-
Remaining-Processing-Time (SRPT) policy and the PS policy
is studied in [9], it shows SRPT has better performance
than PS when the service load is high. Based on the SRPT
policy, the work of [10] improves the performance by giving
preference to the queries whose remaining size or original size
is small. The simulation results show that even the queries
for large files suffer little in this SRPT-based scheduling.
The first analytical study of performance and robustness in
threshold-based resource allocation policies appears in [11],
where the authors conclude that using multiple thresholds does
not always provide benefits to the performance and robustness.
However, there is still no analytical work considering the
freshness in these studies.

The notion of AoI is formally introduced in [2], where the
authors analyze the time average AoI in M/M/1, M/D/1, and
D/M/1 systems under the FCFS policy. Since this seminal
work, the study on the AoI has attracted a lot of research
interests. There is a large body of work that focuses on the
analysis of the AoI under a number of queueing model. For
example, the work of [6], [12], [13] focuses on the model
where the updates arrive according to the Poisson process and
are served by a single server. There is another body of work
that considers how to minimize the AoI by carefully designing
scheduling policies in different scenarios (e.g., wireless net-
works [14], [15] and energy harvesting networks [16], [17]).
In [18], the authors propose the Pull model for investigating
the expected AoI at the user’s side and discover a new tradeoff
between different levels of information freshness and different
response times across the servers. Besides the above work that
focuses on the analysis and optimization of the AoI, several
other work also considers applications where the AoI is highly
relevant (see, e.g., [19], [20]).

Despite the aforementioned studies on service performance
and information freshness, the tradeoff between them has
often been neglected in the literature (partially due to the
nature of the considered applications), except for the following
limited work. In [3], the tradeoff of performance and freshness
has been considered for database-driven web servers, where
the goal is to optimize performance under the freshness
constraint. The work of [4] proposes to combine performance
and freshness into a single compound metric and addresses
the tradeoff between them through optimizing the compound
metric. Further, the work of [4] has been extended to account
for user preference for performance and freshness [5]. In stark
contrast to these studies that provide heuristic solutions only,

A
oI

∆ሺ𝒕ሻ

𝒕𝒊 𝒕𝒊ା𝟏
 ᇱ𝒕𝒊

ᇱ 𝒕𝒊ା𝟏𝒕𝒊ି𝟏
ᇱ𝒕𝒊ି𝟏 Time

𝑨𝒊ି𝟏

𝑨𝒊

𝑨𝒊ା𝟏

Fig. 1: An example of the AoI evolution

in this paper we aim to systematically understand this tradeoff
by providing theoretical results with rigorous analysis.

III. SYSTEM MODEL

In this section, we describe the single-server two-queue
model and give the formal definition of the AoI and the PAoI.

We consider a queueing system where a single server is
shared by two M/M/1 queues. One is the update queue that
buffers updates coming from the information source, and the
other is the query queue that buffers queries from the user.
We assume that the arrival processes of the updates and the
queries are both Poisson with rate λu and λq , respectively.
Also, we assume that the service times of the updates and
the queries are both exponentially distributed with mean 1/µu
and 1/µq , respectively. Therefore, the loads of the update
queue and query queue can be denoted by ρu = λu/µu and
ρq = λq/µq , respectively. In addition, we assume that the
server does not remain at an empty queue if the other queue
is nonempty. Further, let Xu,i be the inter-arrival time between
the i-th update and the (i−1)-th update, let Su,i be the service
time of the i-th update, let Tu,i be the system time of the i-th
update, and let Nu

u,i (resp., Nq
u,i) be the number of updates

(resp., queries) seen by the i-th update upon its arrival. More
generally, we drop subscript i and use Xu, Su, and Tu to
denote the corresponding quantities for an ordinary update.
For example, Xu denotes the inter-arrival time of an update.
Similarly, we define Xq,i, Sq,i, Tq,i, Nu

q,i, N
q
q,i, Xq , Sq , and

Tq for queries. Also, we use Nu (resp., Nq) to denote the
number of updates (resp., queries) in the system.

Next, we give the formal definition of the AoI and the PAoI.
Let U (t) denote the generation time of the freshest update
among those that have been processed by the server. We use
∆(t) to denote the AoI at time t, which is defined as the
time elapsed since the generation of this freshest update, i.e.,
∆(t) , t− U(t). An example of the AoI evolution is shown
in Fig. 1. The AoI increases linearly as time goes until a new
update is completely processed. For example, consider the i-th
update, which is generated at time ti and finishes processing
at time t′i. When the server finishes processing the i-th update,
the AoI drops to the value of t′i − ti, i.e., the system time of
the i-th update. Then, the average AoI can be defined as

∆ = lim
τ→∞

1

τ

∫ τ

0

∆ (t)dt. (1)



TABLE I: Summary of Key Notations

Symbol Meaning
λu Arrival rate of the updates
µu Service rate of the updates
ρu Load of the update queue (i.e., ρu = λu/µu)
Xu,i Inter-arrival time between the i-th and (i− 1)-th updates
Su,i Service time of the i-th update
Tu,i System time of the i-th update
Nu

u,i Number of updates seen by the i-th update upon arrival
Nq

u,i Number of queries seen by the i-th update upon arrival
Nu Number of updates in the system
Ai The i-th PAoI
λq Arrival rate of the queries
µq Service rate of the queries
ρq Load of the query queue (i.e., ρq = λq/µq)
Xq,i Inter-arrival time between the i-th and (i− 1)-th queries
Sq,i Service time of the i-th query
Tq,i System time (or response time) of the i-th query
Nu

q,i Number of updates seen by the i-th query upon arrival
Nq

q,i Number of queries seen by the i-th query upon arrival
Nq Number of queries in the system
ρ Total load (i.e., ρ = ρu + ρq)

Analyzing the average AoI involves two important quanti-
ties: the inter-arrival time and the system time of the updates.
The fact that the latter is dependent on the former often
renders the analysis of the average AoI quite challenging
except for some simple settings (e.g., M/M/1 queue) [2]. On
the other hand, the analysis of the average PAoI is usually
more tractable. The PAoI is the maximum value of the AoI
achieved immediately before a new update is processed. Let Ai
be the i-th PAoI. From Fig. 1, we can see Ai = t′i−ti−1. This
can be rewritten as the sum of the inter-arrival time between
the i-th update and the previous update (i.e., ti − ti−1) and
the system time of the i-th update (i.e., t′i− ti). Therefore, the
expected PAoI can be expressed as

E [A] = E [Xu] + E [Tu] , (2)

where E [·] is the expectation operator and A is the PAoI
corresponding to an update. While computing the first term
of the right hand side (RHS) of Eq. (2) is trivial, i.e.,
E [Xu] = 1/λu, computing the second term E [Tu] is more
involved as it depends on the underlying scheduling policy.

To measure the service performance, we consider the aver-
age response time, i.e., the system time of the queries Tq .

For quick reference, we provide a summary of the key
notations of this paper in Table I.

IV. SCHEDULING POLICIES

In this section, we first consider a simple scheduling policy,
the FCFS policy, and explain its limitation in balancing the
service performance and information freshness. Then, we
propose two threshold-based policies: the Query-k policy that
prioritizes queries and the Update-k policy that prioritizes
updates, and rigorously analyze the response time and the
PAoI under these policies. Further, we propose the Joint-
(M,N) policy, where we jointly set thresholds M and N for
the updates and the queries, respectively. The Joint-(M,N)
policy generalizes the Query-k policy and the Update-k policy

and allows flexibly prioritizing updates or queries through
choosing different values of M and N .

A. The FCFS Policy
We first consider the FCFS policy, a simple policy that

serves updates and queries according to the order of their
arrivals. Preemption is not allowed during the service. The
main results for the FCFS policy are stated in Proposition 1.

Proposition 1: Under the FCFS policy, the expected re-
sponse time is

E [Tq] =
ρu/µu + (1− ρu) /µq

1− ρu − ρq
, (3)

and the expected PAoI is

E [A] =
1

λu
+
ρq/µq + (1− ρq) /µu

1− ρu − ρq
. (4)

The FCFS policy is a simple algorithm and is easy to imple-
ment in practice. However, a key limitation is that the FCFS
policy does not provide a knob for prioritizing either updates
or queries and thus cannot achieve a desired balance between
service performance and information freshness. To that end,
in the following subsections we will propose threshold-based
policies that can prioritize either queries or updates and thus
control the tradeoff between the response time and the PAoI.

B. The Query-k Policy
In this subsection, we propose the Query-k policy that sets

a threshold k for the query queue and prioritizes the queries
whenever the length of the query queue reaches k. We will
analyze the response time and the PAoI under this policy.

Specifically, the Query-k policy functions in the following
manner: (i) there is one single threshold k for the query queue;
(ii) when the server is currently serving the update queue, the
server has to switch from the update queue to the query queue
instantly either if the number of queries reaches the threshold
k (thus preemption is allowed in this policy) or the update
queue becomes empty; (iii) no work of updates is lost due to
the switches; (iv) once the server switches to the query queue,
it needs to empty all queries waiting in the queue before it
switches back to the update queue; (v) within each queue,
FCFS is applied.

In the following, we will discuss three cases of the threshold
value: 1) k = 1, 2) 1 < k <∞, and 3) k =∞.

1) Threshold k=1: In this case, the server processes queries
as long as the query queue is non-empty. Hence, the query
queue always has a higher priority than the update queue.
This model is equivalent to a preemptive priority queue with
two classes of jobs [21, Ch. 32].

Proposition 2: Under the Query-1 policy, the expected
response time is

E [Tq] =
1

µq
+
ρq/µq
1− ρq

, (5)

and the expected PAoI is

E [A] =
1

λu
+

1/µu
1− ρq

+
ρq/µq + ρu/µu

(1− ρq) (1− ρq − ρu)
. (6)



2) Threshold 1 < k < ∞: Since the threshold k is now
larger than 1, the query queue has a higher priority than the
update queue only when the threshold k > 1 is reached. In
other words, the query queue no longer has an absolute priority
over the update queue. Hence, the analysis techniques used
for the case of k = 1 is not applicable here. Instead, we
will analyze the response time and the PAoI by use of the
techniques developed in [22]. In our online technical report [7],
we explain how their techniques can be applied to derive
E [Nq] (i.e., the expected number of queries in the system),
which will be needed for computing the expected response
time (i.e., (7)) and the expected PAoI (i.e., (8)). We state the
main results for the case of 1 < k <∞ in Proposition 3.

Proposition 3: Under the Query-k policy with 1 < k <∞,
the expected response time is

E [Tq] = E[Nq]/λq, (7)

and the expected PAoI is

E [A] =
1

λu
+
µu

λu
·

(
λq/µ

2
q+λu/µ

2
u

1− ρ
− E [Nq]

µq

)
, (8)

where E [Nq] is the expected number of queries in the system.
3) Threshold k = ∞: In this case, since the threshold of

the query queue is infinity, the server switches to serving the
queries only when the update queue becomes empty. Then, it
keeps serving the queries. Only when the query queue becomes
empty, the server switches to serving the updates. Therefore,
the system reduces to the classical two-queue model with
exhaustive service at both queues (i.e., all jobs waiting in
the current queue will be served before the server turns to
the other queue) [23]. The work of [23] presents a method
for deriving the distribution of waiting time for updates and
queries. By using their method, we can obtain the expected
system time for updates and queries, respectively, which can
further be used to analyze the response time and the PAoI.

C. The Update-k Policy

Similar to the Query-k policy that priorities the queries, we
propose another threshold-based policy, called the the Update-
k policy, which prioritizes the updates. Similarly, we will
discuss three cases: 1) k = 1, 2) 1 < k <∞, and 3) k =∞.

1) Threshold k=1: In this case, the server always gives a
higher priority to the update queue. Hence, the updates now
belong to Class 1, and the queries belong to Class 2. We state
the following proposition and omit the proof as it is similar
to that of Proposition 2.

Proposition 4: Under the Update-1 policy, the expected
response time is

E [Tq] = E [T (2)] =
1/µq

1− ρu
+

ρq/µq + ρu/µu
(1− ρu) (1− ρq − ρu)

, (9)

and the expected PAoI is

E [A] = E [Xu] + E [T (1)] =
1

λu
+

1

µu
+
ρu/µu
1− ρu

. (10)

2) Threshold 1 < k <∞: This case is similar to the case
of the Query-k policy with 1 < k < ∞. Following the same
line of analysis as that in the proof of Proposition 3, we can
compute E [Nu] using the techniques developed in [22] and
analyze the expected response time and the PAoI. We state
the main results in Proposition 5 and omit the detailed proof.

Proposition 5: Under the Update-k policy with 1 < k <∞,
the expected response time is

E [Tq] =
µq
λq
·

(
λq/µ

2
q+λu/µ

2
u

1− ρ
− E [Nu]

µu

)
, (11)

and the expected PAoI is

E [A] = 1/λu + E [Nu] /λu. (12)

3) Threshold k = ∞: Same as the Query-k policy,
the system reduces to the classical two-queue model with
exhaustive service at both queues. The analysis will be exactly
the same as that of the Query-k policy with k =∞.

D. The Joint-(M,N) Policy

In the previous two subsections, we have been focused
on threshold-based policies that prioritize either queries or
updates. The analyses reveal the following insights: the priority
is given to the queue with a threshold; the lower the threshold,
the higher the degree of priority. Take the Query-k policy for
example. When k = 1, the query queue always has a higher
priority; when k =∞, the query queue no longer has a higher
priority, because the system reduces to the classical two-queue
model with exhaustive service at both queues. Hence, one
limitation of the single-threshold-based policies is that the
priority is given to one queue only.

Next, we introduce the Joint-(M,N) policy, where we
jointly set thresholds M and N for the updates and the queries,
respectively. This policy generalizes the Query-k policy and
the Update-k policy and allows flexibly prioritizing updates or
queries through choosing different values of M and N .

Specifically, the Joint-(M,N) policy functions in the fol-
lowing manner: (i) the update queue has a threshold M , and
the query queue has a threshold N ; (ii) the server immediately
switches to the queue whose queue length reaches its threshold
and continues to serve this queue as long as the threshold of
the other queue is not reached; (iii) if both thresholds are
reached, the server will serve the queue with a new arrival.

The Query-k policy and the Update-k policy are two special
cases of the Joint-(M,N) policy, where (M = ∞, N = k)
and (M = k,N = ∞), respectively. When 1 < M < ∞ and
1 < N <∞, the Joint-(M,N) policy becomes more flexible
in prioritizing updates and queries. We leave the analyses of
the general Joint-(M,N) policy as our future work. However,
in Section V we provide simulation results to demonstrate its
advantages compared to the one-threshold-based policies.

V. NUMERICAL RESULTS

In this section, we conduct simulations to evaluate the
response time and the PAoI of the proposed policies. We
first consider the FCFS policy and demonstrate its limitations.



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Load of update queue

0

5

10

15
A

v
g
. 
A

o
I

0

5

10

15

A
v
g
. 
R

e
s
p
o
n
s
e
 T

im
e

PAoI (simulation)

PAoI (theoretical)

AoI (simulation)

Response time (simulation)

Response time (theoretical)

(a) FCFS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Load of update queue

0

5

10

15

A
v
g
. 
A

o
I

0

5

10

15

A
v
g
. 
R

e
s
p
o
n
s
e
 T

im
e

PAoI (simulation)

PAoI (theoretical)

AoI (simulation)

Response time (simulation)

Response time (theoretical)

(b) Query-1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Load of update queue

0

5

10

15

A
v
g
. 
A

o
I

0

5

10

15

A
v
g
. 
R

e
s
p
o
n
s
e
 T

im
e

PAoI (simulation)

PAoI (theoretical)

AoI (simulation)

Response time (simulation)

Response time (theoretical)

(c) Query-3

Fig. 2: Performance comparisons of different policies with varying update load (λq = 0.1 and µq = µu = 1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Load of query queue

0

5

10

15

20

25

A
v
g
. 
A

o
I

0

5

10

15

20

25

A
v
g
. 
R

e
s
p
o
n
s
e
 T

im
e

PAoI (simulation)

PAoI (theoretical)

AoI (simulation)

Response time (simulation)

Response time (theoretical)

(a) FCFS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Load of query queue

0

5

10

15

20

25

A
v
g
. 
A

o
I

0

5

10

15

20

25

A
v
g
. 
R

e
s
p
o
n
s
e
 T

im
e

PAoI (simulation)

PAoI (theoretical)

AoI (simulation)

Response time (simulation)

Response time (theoretical)

(b) Update-1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Load of query queue

0

5

10

15

20

25

A
v
g
. 
A

o
I

0

5

10

15

20

25

A
v
g
. 
R

e
s
p
o
n
s
e
 T

im
e

PAoI (simulation)

PAoI (theoretical)

AoI (simulation)

Response time (simulation)

Response time (theoretical)

(c) Update-3

Fig. 3: Performance comparisons of different policies with varying query load (λu = 0.1 and µq = µu = 1)

Then, we show that the single-threshold-based policies (i.e.,
the Query-k policy and the Update-k policy) have the ability to
effectively control the tradeoff between the response time and
the PAoI. Finally, we demonstrate the flexibility of the Joint-
(M,N) policy. We implement and simulate these policies in
Java. In the simulation results, each data point is the average of
10 runs, and each run lasts 20,000 time units. We also include
our analytical results computed using Wolfram Mathematica
for the purpose of comparison.

We first simulate the FCFS policy and assume λq = 0.1
and µq = µu = 1. The results are presented in Fig. 2(a). The
results show that both the average PAoI and the average AoI
decrease first and then increase as the update load increases.
When the update load is low, the PAoI and the AoI are large
due to large inter-arrival times of the updates; when the update
load is high, the PAoI and the AoI are also large due to
large queueing delays. On the other hand, the response time
keeps increasing as a larger update load can only worsen the
congestion condition for queries. Hence, when the update load
is high, the response time and the PAoI can both be poor since
the FCFS policy does not prioritize either queries or updates.

Next, we consider the Query-k policy and assume λq = 0.1
and µq = µu = 1. The results are presented in Figs. 2(b) and
2(c). We can observe from Fig. 2(b) that the average response
time remains unchanged under the Query-1 policy since the
queries are always given a higher priority than the updates,
while the PAoI is only slightly larger than that under the
FCFS policy (e.g., 12.46 vs. 11.62 when ρu = 0.8). Fig. 2(c)
shows that under the Query-3 policy, the response time keeps
increasing as the update load increases, but it is still better than
that under the FCFS policy. Compared to the Query-1 policy,

while the PAoI is a little smaller (e.g., 11.15 vs. 12.46 when
ρu = 0.8), the response time becomes much worse. Therefore,
one need to carefully choose the value of the threshold so as
to effectively control the tradeoff between the response time
and the PAoI. Note that the PAoI does not vary much under
different policies due to a small query rate of 0.1.

Similarly, we compare the FCFS policy with the Update-k
policy with different values of k, by assuming λu = 0.1 and
µq = µu = 1 and varying the query load. The results are
presented in Fig. 3, where similar observations can be made.

Further, we investigate the impact of different values of the
threshold under the threshold-based policies and present the
results in Fig. 4. We assume λu = λq = 1/3 and µu = µq
= 1. Fig. 4(a) shows that under the Query-k policy, as the
threshold k increases, while the PAoI and the AoI decrease, the
response time increases. This is because the degree of priority
given to queries becomes lower as k increases. Such behavior
saturates when k reaches a certain value (e.g., around k = 8
in Fig. 4(a)). Similar observations can be made in Fig. 4(b),
which shows the results for the Update-k policy.

Finally, we also simulate the Joint-(M,N) policy. Assuming
λu = λq = 1/3 and µu = µq = 1, we investigate the impact of
different values of the thresholds M and N on the response
time and the PAoI. The results are presented in Fig. 5. We
observe that the larger (resp., smaller) the value of M (resp.,
N ), the higher the PAoI and the lower the response time.
Therefore, the Joint-(M,N) policy allows more flexibly pri-
oritizing updates or queries through choosing different values
of the two thresholds (i.e., M and N ).



0 2 4 6 8 10 12

Value of threshold k

0

2

4

6

8

10
A

v
g
. 
A

o
I

0

2

4

6

8

10

A
v
g
. 
R

e
s
p
o
n
s
e
 T

im
e

PAoI (simulation)

PAoI (theoretical)

AoI (simulation)

Response time (simulation)

Response time (theoretical)

(a) Query-k

0 2 4 6 8 10 12

Value of threshold k

0

2

4

6

8

10

A
v
g
. 
A

o
I

0

2

4

6

8

10

A
v
g
. 
R

e
s
p
o
n
s
e
 T

im
e

PAoI (simulation)

PAoI (theoretical)

AoI (simulation)

Response time (simulation)

Response time (theoretical)

(b) Update-k

Fig. 4: Impact of the threshold on the single-threshold-based policies
(λu = λq = 1/3 and µu = µq = 1)

0 2 4 6 8 10 12

Value of threshold N

0

2

4

6

8

10

A
v
g

. 
A

o
I

0

2

4

6

8

10

A
v
g

. 
R

e
s
p

o
n

s
e

 T
im

e

PAoI (M= )

PAoI (M=10)

PAoI (M=5)

PAoI (M=1)

Rsponse time (M= )

Response time (M=10)

Response time (M=5)

Response time (M=1)

Fig. 5: Impact of different values of the
thresholds M and N on the Joint-(M,N)
policy (λu = λq = 1/3 and µu = µq = 1)

VI. CONCLUSION

In this paper, we proposed a simple single-server two-queue
model that captures the coupled scheduling between updates
and queries for data-driven real-time applications. Aiming
to address the natural tradeoff between service performance
and information freshness in such applications, we proposed
threshold-based scheduling policies that prioritize updates or
queries and analyzed the response time and the PAoI in a
rigorous manner. The simulation results further demonstrated
that by properly choosing the values of the thresholds, the
proposed policies can achieve the desired balance between
service performance and information freshness.

Although this paper provides useful insights towards the
tradeoff between the response time and the PAoI, there remain
some open questions, which will be investigated in our future
work. For example, it would be interesting to rigorously
analyze the average AoI under the threshold-based policies
and to systematically study the Joint-(M,N) policy. In addi-
tion, we have implicitly assumed that there was a negligible
overhead for the server to switch back and forth between the
query queue and the update queue. It would be interesting to
investigate and characterize the impact of switching cost.

REFERENCES

[1] “Apache storm,” http://storm.apache.org.
[2] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should

one update?” in INFOCOM, 2012 Proceedings IEEE. IEEE, 2012, pp.
2731–2735.

[3] A. Labrinidis and N. Roussopoulos, “Exploring the tradeoff between
performance and data freshness in database-driven web servers,” The
VLDB JournalThe International Journal on Very Large Data Bases,
vol. 13, no. 3, pp. 240–255, 2004.

[4] H. Qu, A. Labrinidis, and D. Mosse, “Unit: User-centric transaction
management in web-database systems,” in Data Engineering, 2006.
ICDE’06. Proceedings of the 22nd International Conference on. IEEE,
2006, pp. 33–33.

[5] H. Qu and A. Labrinidis, “Preference-aware query and update scheduling
in web-databases,” in Data Engineering, 2007. ICDE 2007. IEEE 23rd
International Conference on. IEEE, 2007, pp. 356–365.

[6] M. Costa, M. Codreanu, and A. Ephremides, “Age of information
with packet management,” in Information Theory (ISIT), 2014 IEEE
International Symposium on. IEEE, 2014, pp. 1583–1587.

[7] Z. Liu and B. Ji, “Towards the Tradeoff Between Service Performance
and Information Freshness,” arXiv e-prints, p. arXiv:1901.00826, Jan
2019.

[8] M. Harchol-Balter, M. Crovella, and C. Murta, “To queue or not to
queue?: When fcfs is better than ps in a distributed system,” MIT, Tech.
Rep., 1997.

[9] M. Harchol-Balter, M. Crovella, and S. Park, “The case for srpt
scheduling in web servers,” MIT, Tech. Rep., 1998.

[10] M. Harchol-Balter, B. Schroeder, N. Bansal, and M. Agrawal, “Size-
based scheduling to improve web performance,” ACM Transactions on
Computer Systems (TOCS), vol. 21, no. 2, pp. 207–233, 2003.

[11] T. Osogami, M. Harchol-Balter, and A. Scheller-Wolf, “Robustness and
performance of threshold-based resource allocation policies,” Working
paper, Tech. Rep., 2005.

[12] C. Kam, S. Kompella, and A. Ephremides, “Age of information under
random updates,” in Information Theory Proceedings (ISIT), 2013 IEEE
International Symposium on. IEEE, 2013, pp. 66–70.

[13] R. D. Yates and S. Kaul, “Real-time status updating: Multiple sources,”
in Information Theory Proceedings (ISIT), 2012 IEEE International
Symposium on. IEEE, 2012, pp. 2666–2670.

[14] I. Kadota, A. Sinha, E. Uysal-Biyikoglu, R. Singh, and E. Modiano,
“Scheduling policies for minimizing age of information in broadcast
wireless networks,” arXiv preprint arXiv:1801.01803, 2018.

[15] N. Lu, B. Ji, and B. Li, “Age-based scheduling: Improving data freshness
for wireless real-time traffic,” in Proceedings of the Eighteenth ACM
International Symposium on Mobile Ad Hoc Networking and Computing.
ACM, 2018, pp. 191–200.

[16] R. D. Yates, “Lazy is timely: Status updates by an energy harvesting
source,” in Information Theory (ISIT), 2015 IEEE International Sympo-
sium on. IEEE, 2015, pp. 3008–3012.

[17] Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal, and N. B. Shroff,
“Update or wait: How to keep your data fresh,” IEEE Transactions on
Information Theory, vol. 63, no. 11, pp. 7492–7508, 2017.

[18] Y. Sang, B. Li, and B. Ji, “The power of waiting for more than one
response in minimizing the age-of-information,” in GLOBECOM 2017-
2017 IEEE Global Communications Conference. IEEE, 2017, pp. 1–6.

[19] M. Patra, A. Sengupta, and C. S. R. Murthy, “On minimizing the system
information age in vehicular ad-hoc networks via efficient scheduling
and piggybacking,” Wireless Networks, vol. 22, no. 5, 2016.

[20] X. He, J. Pan, O. Jin, T. Xu, B. Liu, T. Xu, Y. Shi, A. Atallah, R. Her-
brich, S. Bowers et al., “Practical lessons from predicting clicks on ads
at facebook,” in Proceedings of the Eighth International Workshop on
Data Mining for Online Advertising. ACM, 2014, pp. 1–9.

[21] M. Harchol-Balter, Performance modeling and design of computer
systems: queueing theory in action. Cambridge University Press, 2013.

[22] O. J. Boxma, G. Koole, and I. Mitrani, “A two-queue polling model
with a threshold service policy,” in Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems, 1995. MASCOTS’95.,
Proceedings of the Third International Workshop on. IEEE, 1995.

[23] L. Takács, “Two queues attended by a single server,” Operations
Research, vol. 16, no. 3, pp. 639–650, 1968.


